Revisiting the categorical interpretation of dependent type theory
نویسندگان
چکیده
We show that Hofmann’s and Curien’s interpretations of Martin-Löf’s type theory, which were both designed to cure a mismatch between syntax and semantics in Seely’s original interpretation in locally cartesian closed categories, are related via a natural isomorphism. As an outcome, we obtain a new proof of the coherence theorem needed to show the soundness after all of Seely’s interpretation.
منابع مشابه
Dependent Cartesian Closed Categories
We present a generalization of cartesian closed categories (CCCs) for dependent types, called dependent cartesian closed categories (DCCCs), which also provides a reformulation of categories with families (CwFs), an abstract semantics for Martin-Löf type theory (MLTT) which is very close to the syntax. Thus, DCCCs accomplish mathematical elegance as well as a direct interpretation of the syntax...
متن کاملA History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملGame Semantics for Martin-Löf Type Theory
We present a new game semantics for Martin-Löf type theory (MLTT); our aim is to give a mathematical and intensional explanation of MLTT. Specifically, we propose a category with families (a categorical model of MLTT) of a novel variant of games, which induces an injective (when Id-types are excluded) and surjective interpretation of the intensional variant of MLTT equipped with unit-, empty-, ...
متن کاملThe Interpretation of Intuitionistic Type Theory in Locally Cartesian Closed Categories - an Intuitionistic Perspective
We give an intuitionistic view of Seely’s interpretation of Martin-Löf’s intuitionistic type theory in locally cartesian closed categories. The idea is to use Martin-Löf type theory itself as metalanguage, and E-categories, the appropriate notion of categories when working in this metalanguage. As an E-categorical substitute for the formal system of Martin-Löf type theory we use E-categories wi...
متن کاملOn Computational Paths and the Fundamental Groupoid of a Type
The main objective of this work is to study mathematical properties of computational paths. Originally proposed by de Queiroz & Gabbay (1994) as ‘sequences of rewrites’, computational paths can be seen as the grounds on which the propositional equality between two computational objects stand. Using computational paths and categorical semantics, we take any type A of type theory and construct a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 546 شماره
صفحات -
تاریخ انتشار 2014